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ABSTRACT

The design of quasi-lumped element band-pass filters using
DC isolated shunt inductors with finite frequency
attenuation poles below the pass-band is described. The
design uses coupled series transmission lines for improved
tuning.  Although generally applicable, these filters are
particularly useful for planar thin film High Temperature
Superconductors.

INTRODUCTION

Quasi-lumped band-pass filters for operation in the low
microwave region and above, tend to have small circuit
structures which together with process tolerances,
uncertainties in dielectric constant, inaccuracies in the
modeling process and spreads in other physical parameters
usually require the filter to be tuned. For series
resonators (and hence series connected inductors), if tuners
are used to change the values of the shunt capacitors at
either ends of the inductors, then as these capacitors also
form part of the coupling network, it is very difficult to
change the resonant frequencies without significantly
affecting the coupling between resonators. A practical
quasi-lumped circuit structure with better tunability is the
band-pass filter with shunt inductors shown in Figure 1.
The need for grounding one end of the inductor is avoided
by capacitively coupling the ground end of the structure.
This has the effect of introducing a pole in the susceptance
of the network at a frequency below the zero of this
function. A plot of the susceptance of this type of
resonator showing the pole and zero is given in Figure 2.
The zero corresponds to the parallel resonance of the
network and traditional filter design techniques [1] using
the admittance slope parameter at this resonance can be
utilized to synthesize a filter. However, the introduction of
the pole can cause the susceptance at the band edges to be
significantly different from the simple shunt parallel LC
resonator. It has been observed that with complex
resonators, of the type described here, these traditional
filter synthesis techniques produce inaccuracies in the
computed filter performance. The design technique given
below, based on the band edge susceptances, overcomes
these deficiencies.
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SHUNT INDUCTOR RESONATORS

The design of high-frequency, lumped-element, shunt
resonator band-pass filters requires the resonator to have
zero susceptance at resonance. Normally, the design is
based upon the susceptance slope at the resonant frequency
and the fractional bandwidth. The design approach given
below modifies this approach to design the band-pass filter
based upon the band edge frequencies and the susceptance
at those frequencies only. This is necessary for filters using
these resonators as the susceptance deviates from that of a
simple parallel LC resonator, particularly as the bandwidth
increases. The actual resonant frequency may occur
anywhere between the band edge frequencies and is not
necessarily at the geometric band center frequency. This
forces the design to be accurate at the band edges of the
band-pass filter and allows for the performance to deviate
from that achieved from the normal parallel LC
arrangement within the pass-band. For equal ripple
Chebyshev designs, this causes changes in the filter
attenuation zero frequencies with no degradation in the
maximum pass-band ripple level. In general, the design
procedure, depicted in Figure 3, matches the susceptance at
the pass-band edges of the simple parallel LC arrangement
to that of the new resonator structure.

As can be seen by the resonator in Figure 3(b), the
structure is relatively complex but by modifying only the
transmission lines shown above the inductor, one need not
generate a model for the complete structure.  The
susceptance of this resonator at the band edges can be
determined through accurate computer modeling or
experimentally. With the inductor connected to the mid-
point of the series transmission line, the susceptance of the
two series transmission lines connected at this point can be
equated to an equivalent capacitance (C, ) at @g as shown in
Figure 3(c).

Figure 4(a) shows a design where the susceptance slope
parameters at the resonant frequency, @, are set equal for
both the simple LC resonator and the complex resonator
used to build the filter. In general, as shown in Figure
4(a), the susceptance of these two resonators will not be
equal at the edges of the pass-band. The new design
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approach is shown in Figure 4(b) where the susceptance of
the two resonators are made equal at the band edge
frequencies, ®; and ®,. In general, this results in the
resonant frequency of the two resonators occurring at
different frequencies (o, for the LC resonator and o' for
the actual resonator).

Using the band edge frequencies and susceptance, the
resulting filter will have identical performance to the LC
resonator filter at the pass-band edges. This will result in
some deviation from the ideal LC resonator design, but the
width of the pass-band and band edge frequencies will be
maintained. From a design standpoint, one can use the LC
resonator model to design the filter once the susceptances of
the two resonators are equalized at the band edges. This
then allows the design to proceed in a similar manner to
Ref. [1], Fig. 8.02-4, with the expression given in equation
(1) used for the susceptance slope parameter, b.
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SHUNT INDUCTOR RESONATOR BAND-PASS
FILTER DESIGN

The design is based upon a generalized band-pass filter
circuit using admittance inverters, as shown in Figure 5.
Given the band edge frequencies, @, and @,, and the
susceptance, B, of the resonator at these frequencies, the
LC resonator equivalent susceptance slope parameter, b,
can be derived as shown in equation (1) and the equations
(2) below can be used to design the filter.
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In the equations (2), &', is the low-pass prototype cut-off
frequency and can be set equal to 1. The resulting filter is
of the form shown in Figure 6. The matching transformers
at the ends of the filter have shunt capacitors, C; and C, 1,
the value of which can be selected at will (including equal
to zero) in order to make the end elements realizable.

The negative capacitors from the admittance inverters, C,
through C, , can be absorbed into the first element (i.e. the
open circuit series transmission line of shunt resonator or
it’s equivalent capacitance, C, ), at each node of the filter.
For lumped element resonators that are connected as 1-port
networks, this design procedure is adequate. However,
coupling to the center of the transmission lines to adjacent
resonators is not practical. The coupled 1-port resonator
must be modified to connect the resonators as 2-port
networks.

SERIES TRANSMISSION LINE COUPLING
STRUCTURE

The problem of connecting the shunt resonator as a 2-port
network rather than a 1l-port network can be solved by
modifying the admittance inverters. The transformation of
the lumped element resonator with capacitive admittance
inverter, Figure 7a, to a series of coupled transmission
lines, Figure 7b, can be accomplished by equating the two
networks. In the equations (3) below, C, is half of the
equivalent shunt capacitor from the resonator, C; is the
fringing capacitance from the ends of the transmission lines
end C, is the series coupling capacitance between (he
tr-nemission lines (all capacitance determined at @g).
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This transformation preserves the 900 phase shift from the
1-port node of one resonator to the node of the adjacent
resonators. The effect of this transformation is to re-form
the transmission line that C, was derived from, but with a
different length than used with the original resonator.

End coupling to the transmission lines at the input and
output ends of the filter can be derived in a similar manner.
However, the coupling capacitance that results tends to be
unrealizably large, resulting in an unacceptably small gap,
and therefore alternative coupling techniques usually need
to be employed.
DESIGN EXAMPLE

To show this design procedure, a trial filter is shown in
Figure 8. The design uses the same basic resonator
throughout the filter. TBCCO superconductor on a 0.020”
thick MgO substrate was used to construct the circuit. The
susceptance at the band edges for the resonators was
determined to be |B| = 0.0002632 mhos using an in-house

generated software program.  The input and output
coupling was achieved using asymmetric coupled microstrip
transmission lines, similar to those shown in Figure 1. The
input/output coupling capacitance and associated shunt
capacitors are those that would give the same susceptance at
o as the asymmetric coupled lines, with the length of the

end scries transmission lines adjusted to maintain
resonance. Using this coupling technique avoids
unrealizably small coupling gaps. The 0.24569pF

input/output coupling capacitor was realized by coupling
the 50 Q input/output transmission lines to the 0.040”
width resonator lines with a length of 0.1213” and a gap of
0.0024”. The element values given in Figure 8 are readily
realizable in printed form on a dielectric substrate. The
predicted performance of the trial filter is shown in Figure
9, using the ideal capacitor values for the input/output
coupling network.  Center frequency tuning can be
achieved by the addition of shunt capacitance to either of
the transmission lines of the resonator or by perturbing the
capacitance across the inductor. Also, the coupling gap is
readily accessible for tuning bandwidth.

Figure 10 shows the measured performance of the above
filter at 77K. Although the performance of this filter is
reasonably good, it was about 80 MHz higher than the
design center frequency and the return loss was not as good
as predicted. The frequency error was greater than could
be adjusted using tuning and was attributed to an error in
the derivation of the resonator susceptance. The return loss
was due to inaccuracies in the derivation of input/output
coupling structure (as closed form approximations were
used together with approximate fringing capacitances).

CONCLUSION
The band-pass filter design given above allows for practical
narrow band-pass filters to be generated, without the need

for DC ground connections to the inductor. By the use of

numerical techniques, electromagnetic simulation on 2
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computer can be used to predict an individual resonator’s
susceptance. Using the above design procedure, a complzie
band-pass filter can then be systematically constructed.
The resulting filter is very realizable as a planar circuit
pattern created on a dielectric substrate and is inherently
tunable as compared to more common series inductor
realizations.
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Figure 1. DC isolated shunt inductor BPF.
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Figure 2. Typical susceptance of the complex resonator.
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Figure 3. The susceptance of a simple LC resonator (a) is
matched to the susceptance of a complex resonator (b) at ,
and w, , (c) shows the equivalent shunt capacitances, C., of
the transmission line used to transform to a 2-port device.
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Figure 4. In (a) the resonant frequency of both the LC and
complex resonators have the same susceptance slope at
resonance. In (b) the LC and complex resonators have the
same susceptance at the band edges of the band-pass filter.
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Figure 5. Band-pass filter using shunt resonators and
admittance inverters.
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Figure 6. Realization of band-pass filter using shunt
resonators, all of the same form with band-edge susceptance
B, and capacitive admittance inverters.
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Figure 7. The lumped capacitor admittance inverter shown
in (a) together with C. is equivalent to the capacitively
coupled series transmission lines shown in (b).
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All resonator transmission lines are microstrip, 0.040" wide
Substrate Er=9.7, thickness =0.020"

Length=.1213"
Gap=.0024"
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Figure 8. Component values for a trial shunt resonator
band-pass filter example (n=4, 0.01 dB equal ripple
Chebyshey, fo=1902.5 MHz, BW=17 MHz).

185 187 TSHEEE a3 1ss
2 Y
10 \ N\
10 AL
e A N N
2 7 I\
.30 / N ’

-35

-40 /

-45
-50 ,/ N

$21dB & S11dB

Figure 9. Computer predicted performance of the trial 4th
order, 0.01 dB equal ripple Chebyshev band-pass filter.
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Figure 10. Measured performance of the trial 4th order,
0.01 dB equal ripple Chebyshev band-pass filter.



